Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.331
Filtrar
1.
Bioorg Chem ; 144: 107171, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325131

RESUMO

Pin1 (proline isomerase peptidyl-prolyl isomerase NIMA-interacting-1), as a member of PPIase family, catalyzes cis-trans isomerization of pThr/Ser-Pro amide bonds of its substrate proteins, further regulating cell proliferation, division, apoptosis, and transformation. Pin1 is overexpressed in various cancers and is positively correlated with tumor initiation and progression. Pin1 inhibition can effectively reduce tumor growth and cancer stem cell expansion, block metastatic spread, and restore chemosensitivity, suggesting that targeting Pin1 may be an effective strategy for cancer treatment. Considering the promising therapeutic effects of Pin1 inhibitors on cancers, we herein are intended to comprehensively summarize the reported Pin1 inhibitors, mainly highlighting their structures, biological functions and binding modes, in hope of providing a reference for the future drug discovery.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Neoplasias/tratamento farmacológico , Proliferação de Células
2.
Nat Commun ; 15(1): 40, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167292

RESUMO

The peptidyl-prolyl cis-trans isomerase Pin1 is a pivotal therapeutic target in cancers, but the regulation of Pin1 protein stability is largely unknown. High Pin1 expression is associated with SUMO1-modified protein hypersumoylation in glioma stem cells (GSCs), but the underlying mechanisms remain elusive. Here we demonstrate that Pin1 is deubiquitinated and stabilized by USP34, which promotes isomerization of the sole SUMO E2 enzyme Ubc9, leading to SUMO1-modified hypersumoylation to support GSC maintenance. Pin1 interacts with USP34, a deubiquitinase with preferential expression and oncogenic function in GSCs. Such interaction is facilitated by Plk1-mediated phosphorylation of Pin1. Disruption of USP34 or inhibition of Plk1 promotes poly-ubiquitination and degradation of Pin1. Furthermore, Pin1 isomerizes Ubc9 to upregulate Ubc9 thioester formation with SUMO1, which requires CDK1-mediated phosphorylation of Ubc9. Combined inhibition of Pin1 and CDK1 with sulfopin and RO3306 most effectively suppresses orthotopic tumor growth. Our findings provide multiple molecular targets to induce Pin1 degradation and suppress hypersumoylation for cancer treatment.


Assuntos
Glioma , Peptidilprolil Isomerase , Humanos , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Sumoilação , Isomerismo , Fosforilação , Glioma/genética , Células-Tronco Neoplásicas/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
3.
Mol Cell Proteomics ; 23(2): 100715, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216124

RESUMO

Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.


Assuntos
Peptidilprolil Isomerase , Proteoma , Animais , Humanos , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Fibroblastos/metabolismo , Oncogenes , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Senescência Celular/fisiologia , Mamíferos/metabolismo
4.
Phys Chem Chem Phys ; 26(5): 4643-4656, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251755

RESUMO

Pin1 (protein interacting with never-in-mitosis akinase-1) is a member of the family of peptidylprolyl cis-trans isomerases (PPIases) that specifically recognize and isomerize substrates containing phosphorylated Ser/Thr-Pro sequences. Pin1 is involved in many cellular processes and plays a key role in the cell cycle, transcriptional regulation, cell metabolism, proliferation and differentiation, and its abnormalities lead to degenerative and neoplastic diseases. Pin1 is highly expressed in human cancers and promotes the development of tumors by activating multiple oncogenes and inactivating multiple tumor suppressor genes, making it an attractive target for cancer therapy. In this study, we investigated the binding mechanism and conformational relationship between benzimidazole Pin1 inhibitors and Pin1 proteins by molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, binding free energy calculations and decomposition, and molecular dynamics simulations. Molecular docking and molecular dynamics simulations disclosed the most likely binding pose of benzimidazoles with the Pin1 protein. The results of 3D-QSAR modeling indicated that electrostatic fields, hydrophobic fields and hydrogen bonding play important roles in the binding process of inhibitors to proteins. The binding free energy calculations and energy decomposition indicated that Lys63, Arg69, Cys113, Leu122, Met130, and Ser154 may be key residues in the binding of benzimidazole-based inhibitors to the Pin1 protein. This study provides an important theoretical basis for the design and optimization of benzimidazole compounds.


Assuntos
Benzimidazóis , Simulação de Dinâmica Molecular , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Simulação de Acoplamento Molecular , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Ligação Proteica
5.
Nat Microbiol ; 9(1): 70-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38082149

RESUMO

Interbacterial antagonism and associated defensive strategies are both essential during bacterial competition. The human gut symbiont Bacteroides fragilis secretes a ubiquitin homologue (BfUbb) that is toxic to a subset of B. fragilis strains in vitro. In the present study, we demonstrate that BfUbb lyses certain B. fragilis strains by non-covalently binding and inactivating an essential peptidyl-prolyl isomerase (PPIase). BfUbb-sensitivity profiling of B. fragilis strains revealed a key tyrosine residue (Tyr119) in the PPIase and strains that encode a glutamic acid residue at Tyr119 are resistant to BfUbb. Crystal structural analysis and functional studies of BfUbb and the BfUbb-PPIase complex uncover a unique disulfide bond at the carboxy terminus of BfUbb to mediate the interaction with Tyr119 of the PPIase. In vitro coculture assays and mouse studies show that BfUbb confers a competitive advantage for encoding strains and this is further supported by human gut metagenome analyses. Our findings reveal a previously undescribed mechanism of bacterial intraspecies competition.


Assuntos
Infecções Bacterianas , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Bacteroides fragilis/genética , Ubiquitina/metabolismo , Bactérias/metabolismo , Peptidilprolil Isomerase/metabolismo
6.
Bone Res ; 11(1): 64, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097598

RESUMO

Given afferent functions, sensory nerves have recently been found to exert efferent effects and directly alter organ physiology. Additionally, several studies have highlighted the indirect but crucial role of sensory nerves in the regulation of the physiological function of osteoclasts. Nonetheless, evidence regarding the direct sensory nerve efferent influence on osteoclasts is lacking. In the current study, we found that high levels of efferent signals were transported directly from the sensory nerves into osteoclasts. Furthermore, sensory hypersensitivity significantly increased osteoclastic bone resorption, and sensory neurons (SNs) directly promoted osteoclastogenesis in an in vitro coculture system. Moreover, we screened a novel neuropeptide, Cyp40, using an isobaric tag for relative and absolute quantitation (iTRAQ). We observed that Cyp40 is the efferent signal from sensory nerves, and it plays a critical role in osteoclastogenesis via the aryl hydrocarbon receptor (AhR)-Ras/Raf-p-Erk-NFATc1 pathway. These findings revealed a novel mechanism regarding the influence of sensory nerves on bone regulation, i.e., a direct promoting effect on osteoclastogenesis by the secretion of Cyp40. Therefore, inhibiting Cyp40 could serve as a strategy to improve bone quality in osteoporosis and promote bone repair after bone injury.


Assuntos
Reabsorção Óssea , Osteogênese , Humanos , Peptidilprolil Isomerase/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo
7.
Sci Rep ; 13(1): 19116, 2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926757

RESUMO

Gastric cancer (GC) is a malignant tumor with high incidence rate and mortality. Due to the lack of effective diagnostic indicators, most patients are diagnosed in late stage and have a poor prognosis. An increasing number of studies have proved that Peptidylprolyl isomerase A (PPIA) can play an oncogene role in various cancer types. However, the precise mechanism of PPIA in GC is still unclear. Herein, we analyzed the mRNA levels of PPIA in pan-cancer. The prognostic value of PPIA on GC was also evaluated using multiple databases. Additionally, the relationship between PPIA expression and clinical factors in GC was also examined. We further confirmed that PPIA expression was not affected by genetic alteration and DNA methylation. Moreover, the upstream regulator miRNA and lncRNA of PPIA were identified, which suggested that LINC10232/miRNA-204-5p/PPIA axis might act as a potential biological pathway in GC. Finally, this study revealed that PPIA was negatively correlated with immune checkpoint expression, immune cell biomarkers, and immune cell infiltration in GC.


Assuntos
MicroRNAs , Peptidilprolil Isomerase , Neoplasias Gástricas , Humanos , Carcinogênese/genética , Biologia Computacional , MicroRNAs/genética , Peptidilprolil Isomerase/metabolismo , Prognóstico , Neoplasias Gástricas/patologia
8.
Zhen Ci Yan Jiu ; 48(10): 1009-1016, 2023 Oct 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37879951

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture (EA) on motor function, expression of extracellular cyclophile A(PPIA) and PPIA/nuclear factor-κB (NF-κB) signaling pathway in spinal cord of amyotrophic la-teral sclerosis (ALS) mice, so as to explore the mechanism of EA intervention in regulating extracellular PPIA on neuroinflammation in ALS mice. METHODS: Thirty ALS-SOD1G93A mice with hSOD1-G93A gene were randomly divided into model, EA and Riluzole groups , with 10 mice in each group, and other 10 ALS-SOD1G93A negative mice were used as the blank group. EA was applied to bilateral "Yanglingquan"(GB34) and "Zusanli"(ST36) for 20 min once daily, 5 days a week for 2 weeks. In the Riluzole group, riluzole solution (30 mg·kg-1·d-1) was administrated intragastrically, and the treatment time was the same as that in the EA group.Rotating rod experiment and open field experiment were used to evaluate the changes in motor function of mice .The morphology of motor neurons in the anterior horn of spinal cord was observed by HE staining.The relative protein expression levels of PPIA, TDP-43 and NF-κB in the spinal cord were detected by Western blot.The positive expression level of TDP-43 in the spinal cord was detected by immunohistochemistry. The positive expression level of PPIA in spinal cord was marked by immunofluorescence. Serum PPIA content was determined by ELISA. RESULTS: Compared with the blank group, the time of rod dropping and the total distance of open field movement in the model group were shortened (P<0.01), the number of motor neurons in the anterior horn of the spinal cord was reduced, the cell morphology was incomplete, the cell body was atrophied, the protein expression and positive expression of TDP-43 were increased (P<0.01), the protein expressions of PPIA and NF-κB in the spinal cord were increased(P<0.01), the serum content of PPIA and immunofluorescence expression of PPIA in spinal cord were increased (P<0.01). Compared with the model group, the time of rod dropping and the total distance of open field movement of mice in the EA group and the Riluzole group were prolonged (P<0.05, P<0.01), and the injury of motor neuron in the anterior horn of the spinal cord was decreased, the protein expression and positive expression of TDP-43 in the spinal cord were decreased (P<0.05, P<0.01);the relative expression levels of PPIA and NF-κB proteins were decreased (P<0.05, P<0.01), and the content of PPIA in serum and the immunofluorescence expression of PPIA in the spinal cord were decreased (P<0.05, P<0.01) in the EA group;the relative protein expression of NF-κB and fluorescence expression of PPIA in spinal cord of mice in the Riluzole group were decreased (P<0.05). CONCLUSIONS: EA intervention can improve motor function in ALS mice, and its mechanism may be related to the inhibition of PPIA/NF-κB signaling pathway by EA to alleviating neuroinflammatory response.


Assuntos
Esclerose Amiotrófica Lateral , Eletroacupuntura , Animais , Camundongos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/terapia , Esclerose Amiotrófica Lateral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Riluzol , Transdução de Sinais , Medula Espinal , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Peptidilprolil Isomerase/metabolismo
9.
PLoS Pathog ; 19(7): e1011491, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37399210

RESUMO

Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.


Assuntos
Coxiella burnetii , Febre Q , Animais , Humanos , Peptidilprolil Isomerase/metabolismo , Proteínas de Bactérias/metabolismo , Peróxido de Hidrogênio/metabolismo , Bactérias/metabolismo , Macrófagos/metabolismo
10.
Front Cell Infect Microbiol ; 13: 1195063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404723

RESUMO

Here, we demonstrate that the peptidyl-prolyl cis/trans isomerase Pin1 interacts noncovalently with the hepatitis B virus (HBV) core particle through phosphorylated serine/threonine-proline (pS/TP) motifs in the carboxyl-terminal domain (CTD) but not with particle-defective, dimer-positive mutants of HBc. This suggests that neither dimers nor monomers of HBc are Pin1-binding partners. The 162TP, 164SP, and 172SP motifs within the HBc CTD are important for the Pin1/core particle interaction. Although Pin1 dissociated from core particle upon heat treatment, it was detected as an opened-up core particle, demonstrating that Pin1 binds both to the outside and the inside of the core particle. Although the amino-terminal domain S/TP motifs of HBc are not involved in the interaction, 49SP contributes to core particle stability, and 128TP might be involved in core particle assembly, as shown by the decreased core particle level of S49A mutant through repeated freeze and thaw and low-level assembly of the T128A mutant, respectively. Overexpression of Pin1 increased core particle stability through their interactions, HBV DNA synthesis, and virion secretion without concomitant increases in HBV RNA levels, indicating that Pin1 may be involved in core particle assembly and maturation, thereby promoting the later stages of the HBV life cycle. By contrast, parvulin inhibitors and PIN1 knockdown reduced HBV replication. Since more Pin1 proteins bound to immature core particles than to mature core particles, the interaction appears to depend on the stage of virus replication. Taken together, the data suggest that physical association between Pin1 and phosphorylated core particles may induce structural alterations through isomerization by Pin1, induce dephosphorylation by unidentified host phosphatases, and promote completion of virus life cycle.


Assuntos
Vírus da Hepatite B , Replicação Viral , Vírus da Hepatite B/genética , Replicação Viral/genética , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Fosforilação
11.
Science ; 381(6654): eadg9091, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440661

RESUMO

The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production. We experimentally validate this result for two different viral species, providing a clear model for bacterial lysis and unifying previous experimental data. Additionally, we characterize the Escherichia coli MraY structure-revealing features of this essential enzyme-and the structure of the chaperone SlyD bound to a protein. Our structures provide insights into the mechanism of phage-mediated lysis and for structure-based design of phage therapeutics.


Assuntos
Antibacterianos , Bacteriólise , Bacteriófago phi X 174 , Proteínas de Escherichia coli , Escherichia coli , Proteínas Virais , Antibacterianos/metabolismo , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Imagem Individual de Molécula , Microscopia Crioeletrônica
12.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511172

RESUMO

FKBP10, a member of the FK506-binding protein (FKBP) family, has been implicated in cancer development, although its prognostic function remains controversial. In this study, we analyzed the expression of FKBP10 in tumor tissues using online databases (TCGA) as well as our CRC cohort, and investigated the relationship between its subcellular expression pattern and patient outcomes. Cox regression analysis was used to determine the associations between different subcellular expression patterns of FKBP10 and clinical features of patients. We also discussed the expression level of FKBP10 based on different subcellular expression patterns. Our results showed that FKBP10 was significantly elevated in CRC tissues and exhibited three different subcellular expression patterns which were defined as 'FKBP10-C' (concentrated), 'FKBP10-T' (transitional) and 'FKBP10-D' (dispersive). The FKBP10-D expression pattern was only found in tumor tissues and was associated with unfavorable disease-free survival in CRC patients. High expression levels of FKBP10-C predicted an unfavorable prognosis of recurrence of CRC, while FKBP10-D did not. Our findings suggest that the subcellular expression patterns and expression level of FKBP10 play crucial prognostic roles in CRC, which revealed that FKBP10 may be a viable prognostic and therapeutic target for the diagnosis and treatment of CRC.


Assuntos
Neoplasias Colorretais , Peptidilprolil Isomerase , Proteínas de Ligação a Tacrolimo , Humanos , Relevância Clínica , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Peptidilprolil Isomerase/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
13.
J Med Chem ; 66(14): 9251-9277, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37438908

RESUMO

Peptidyl-prolyl cis/trans isomerase family (PPIase) is structurally divided into three subfamilies, cyclophilins (Cyps), FK506-binding proteins (FKBPs), and parvulins. Pin1 belongs to the parvulin family and is the only enzyme capable of isomerizing the phosphorylated Ser/Thr-Pro motif (p-Ser/Thr-Pro) in its interacting proteins. Due to its multibiological functions in vivo, including folding, intracellular signaling, transcription, cell cycle progression, and apoptosis, Pin1 is extensively studied as a promising drug target for various human diseases, especially cancer. In this Perspective, we summarized the literature covering diverse classes of Pin1 inhibitors and the inhibition mechanism, aiming to provide insights for the design of potent Pin1 inhibitors and suggest alternative strategies for developing potent Pin1 inhibitors.


Assuntos
Neoplasias , Peptidilprolil Isomerase , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo , Proteínas de Ligação a Tacrolimo , Ciclofilinas , Neoplasias/tratamento farmacológico
14.
Chembiochem ; 24(21): e202300442, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489700

RESUMO

Legionella pneumophila is the causative agent of Legionnaires' disease, a serious form of pneumonia. Its macrophage infectivity potentiator (Mip), a member of a highly conserved family of FK506-binding proteins (FKBPs), plays a major role in the proliferation of the gram-negative bacterium in host organisms. In this work, we test our library of >1000 FKBP-focused ligands for inhibition of LpMip. The [4.3.1]-bicyclic sulfonamide turned out as a highly preferred scaffold and provided the most potent LpMip inhibitors known so far. Selected compounds were non-toxic to human cells, displayed antibacterial activity and block bacterial proliferation in cellular infection-assays as well as infectivity in human lung tissue explants. The results confirm [4.3.1]-bicyclic sulfonamides as anti-legionellal agents, although their anti-infective properties cannot be explained by inhibition of LpMip alone.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Doença dos Legionários/tratamento farmacológico , Doença dos Legionários/microbiologia , Proteínas de Ligação a Tacrolimo , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Legionella/metabolismo
15.
Free Radic Biol Med ; 207: 296-307, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37473874

RESUMO

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) isomerizes the nearby proline (Pro) residue when it detects phosphorylated serine (Ser) or threonine (Thr) of target proteins, altering their structure, stability, function, and interaction with other proteins. Hypoxia-inducible factor 2α (HIF-2α), a transcription factor that transactivates many oncogenic genes under hypoxic conditions, harbours the pSer/Thr-Pro motif. We found for the first time that Pin1 binds to HIF-2α physically in normoxic as well as hypoxic conditions in human breast cancer cells. The level of ubiquitinated HIF-2α was significantly raised by Pin1 knockdown, while expression of its mRNA transcript was unaffected. In agreement with this observation, the cycloheximide chase assay demonstrated that Pin1 prolonged the stability of HIF-2α. Serine 672, 696, and 790 of HIF-2α were found to undergo phosphorylation. Of these, the main amino acid involved in the Pin1 binding and HIF-2α stabilization was identified as serine 790, located in the nuclear export signal region of HIF-2α. The tissue array with human breast cancer specimens showed elevated expression of HIF-2α as well as Pin1 compared to adjacent normal tissues. Knockdown of Pin1 or HIF-2α diminished breast cancer cell migration and colony formation. In conclusion, Pin1 stabilizes HIF-2α through direct interaction, which contributes to the growth of breast cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias da Mama , Peptidilprolil Isomerase de Interação com NIMA , Feminino , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Oxigênio , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Fosforilação , Serina/genética , Serina/metabolismo
16.
FEBS J ; 290(19): 4660-4678, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37345229

RESUMO

FKBP25 (FKBP3 gene) is a dual-domain PPIase protein that consists of a C-terminal PPIase domain and an N-terminal basic tilted helix bundle (BTHB). The PPIase domain of FKBP25 has been shown to bind to microtubules, which has impacts upon microtubule polymerisation and cell cycle progression. Using quantitative proteomics, it was recently found that FKBP25 was expressed in the top 10% of the mouse skeletal muscle proteome. However, to date there have been few studies investigating the role of FKBP25 in non-transformed systems. As such, this study aimed to investigate potential roles for FKBP25 in myoblast viability, migration and differentiation and in adaptation of mature skeletal muscle. Doxycycline-inducible FKBP25 knockdown in C2C12 myoblasts revealed an increase in cell accumulation/viability and migration in vitro that was independent of alterations in tubulin dynamics; however, FKBP25 knockdown had no discernible impact on myoblast differentiation into myotubes. Finally, a series of in vivo models of muscle adaptation were assessed, where it was observed that FKBP25 protein expression was increased in hypertrophy and regeneration conditions (chronic mechanical overload and the mdx model of Duchenne muscular dystrophy) but decreased in an atrophy model (denervation). Overall, the findings of this study establish FKBP25 as a regulator of myoblast viability and migration, with possible implications for satellite cell proliferation and migration and muscle regeneration, and as a potential regulator of in vivo skeletal muscle adaptation.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Camundongos , Animais , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Diferenciação Celular , Peptidilprolil Isomerase/metabolismo
17.
Braz J Otorhinolaryngol ; 89(3): 383-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37105032

RESUMO

OBJECTIVE: This study aimed to investigate the molecular mechanism of miR-150-5p regulating the malignant biological behavior of Human Epidermoid cancer cell (HEp-2) by targeting peptidyl-prolyl cis/trans isomerase NIMA-Interacting-1 (PIN1). METHODS: Firstly, qRT-PCR and Western blot were adopted to detect the expression levels of miR-150-5p and PIN1 in cancer tissue and paracancerous tissues of patients with LSCC, and those in human bronchial epithelial cells (16 HBE) and HEp-2. Next, the targeted relationship between miR-150-5p and PIN1 was assessed by bioinformatics website and dual-luciferase reporter assay, followed by their correlation analysis. Besides, after interfering with miR-150-5p or PIN1 expression in HEp-2 cells, CCK-8, cell colony formation assay, and transwell assay were utilized to detect the proliferation, viability, and invasion of cells, respectively. Subsequently, the protein levels of MMP-2, MMP-9, and EMT-related proteins in HEp-2 cells were checked by Western blot. RESULTS: Expression of miR-150-5p was down-regulated in LSCC tissues and HEp-2 cells. Moreover, miR-150-5p suppressed proliferation and invasion of HEp-2 cells, affected protein expression related to MMP and EMT, thereby inhibiting development of cancer. The expression of PIN1 was significantly increased in cancer tissues and HEp-2 cells, and there was a targeted relationship and negative correlation between miR-150-5p and PIN1 in cancer tissue. However, overexpression of PIN1 could reverse the effect of miR-150-5p on the proliferation and invasion of HEp-2 cells. CONCLUSION: In a nutshell, there is a targeted relationship between PIN1 and miR-150-5p. Besides, miR-150-5p can inhibit the proliferation and invasion of HEp-2 cells by regulating the expression of PIN1.


Assuntos
Neoplasias Laríngeas , Laringe , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , Laringe/patologia , Regulação Neoplásica da Expressão Gênica , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo
18.
J Dermatol ; 50(4): 462-471, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37006202

RESUMO

Atopic dermatitis (AD) is attributable to both a genetic predisposition and environmental factors. Among numerous cytokines involved in the pathogenesis of AD, interleukin-33 (IL-33), reportedly escaping exocytotically in response to a scratch, is abundantly expressed in the skin tissues of patients with AD and is postulated to induce inflammatory and autoimmune responses. In this study, we first demonstrated that peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (Pin1), a unique enzyme which isomerizes the proline residues of target proteins, is abundantly expressed in keratinocytes, and that the areas where it is present in the skin tissues of AD patients became expanded due to hyperkeratosis. Thus, we investigated the effects of Pin1 on the regulation of IL-33 expression using the human keratinocyte cell line HaCaT. Interestingly, silencing of the Pin1 gene or treatment with Pin1 inhibitors dramatically reduced IL-33 expressions in HaCaT cells, although Pin1 overexpression did not elevate it. Subsequently, we showed that Pin1 binds to STAT1 and the nuclear factor-kappaB (NF-κB) subunit p65. Silencing the Pin1 gene with small interfering RNAs significantly reduced the phosphorylation of p65, while no marked effects of Pin1 on the STAT1 pathway were detected. Thus, it is likely that Pin1 contributes to increased expression of IL-33 via the NF-κB subunit p65 in HaCaT cells, at least modestly. Nevertheless, further study is necessary to demonstrate the pathogenic roles of Pin1 and IL-33 in AD development.


Assuntos
Dermatite Atópica , Peptidilprolil Isomerase , Humanos , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Células HaCaT/metabolismo , Fosforilação , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo
19.
Front Cell Infect Microbiol ; 13: 1140688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936764

RESUMO

The pathogenicity of L. pneumophila, the causative agent of Legionnaires' disease, depends on an arsenal of interacting proteins. Here we describe how surface-associated and secreted virulence factors of this pathogen interact with each other or target extra- and intracellular host proteins resulting in host cell manipulation and tissue colonization. Since progress of computational methods like AlphaFold, molecular dynamics simulation, and docking allows to predict, analyze and evaluate experimental proteomic and interactomic data, we describe how the combination of these approaches generated new insights into the multifaceted "protein sociology" of the zinc metalloprotease ProA and the peptidyl-prolyl cis/trans isomerase Mip (macrophage infectivity potentiator). Both virulence factors of L. pneumophila interact with numerous proteins including bacterial flagellin (FlaA) and host collagen, and play important roles in virulence regulation, host tissue degradation and immune evasion. The recent progress in protein-ligand analyses of virulence factors suggests that machine learning will also have a beneficial impact in early stages of drug discovery.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Proteínas de Bactérias/metabolismo , Fatores de Virulência , Proteômica , Peptidilprolil Isomerase/metabolismo , Doença dos Legionários/microbiologia
20.
Exp Cell Res ; 425(2): 113544, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906101

RESUMO

Hepatic stellate cells (HSCs) produce extracellular matrixes (ECMs), such as collagen and fibronectin, in response to stimulation with transforming growth factor ß (TGFß). The massive ECM accumulation in the liver due to HSCs causes fibrosis which eventually leads to hepatic cirrhosis and hepatoma development. However, details of the mechanisms underlying continuous HSC activation are as yet poorly understood. We thus attempted to elucidate the role of Pin1, one of the prolyl isomerases, in the underlying mechanism(s), using the human HSC line LX-2. Treatment with Pin1 siRNAs markedly alleviated the TGFß-induced expressions of ECM components such as collagen 1a1/2, smooth muscle actin and fibronectin at both the mRNA and the protein level. Pin1 inhibitors also decreased the expressions of fibrotic markers. In addition, it was revealed that Pin1 associates with Smad2/3/4, and that four Ser/Thr-Pro motifs in the linker domain of Smad3 are essential for binding with Pin1. Pin1 significantly regulated Smad-binding element transcriptional activity without affecting Smad3 phosphorylations or translocation. Importantly, both Yes-associated protein (YAP) and WW domain-containing transcription regulator (TAZ) also participate in ECM induction, and upregulate Smad3 activity rather than TEA domain transcriptional factor transcriptional activity. Although Smad3 interacts with both TAZ and YAP, Pin1 facilitates the Smad3 association with TAZ, but not that with YAP. In conclusion, Pin1 plays pivotal roles in ECM component productions in HSCs through regulation of the interaction between TAZ and Smad3, and Pin1 inhibitors may have the potential to ameliorate fibrotic diseases.


Assuntos
Fibronectinas , Peptidilprolil Isomerase , Humanos , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Células Estreladas do Fígado/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Cirrose Hepática/patologia , Fibrose , Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...